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Context & Motivations1

Multi-dimensional hyperbolic system of balance laws

∂tU+∇ · F(U) = S(U),
U vector of unknowns;

F(U) physical flux;
S(U) source term.

Objectif: obtain robust bullet-proof numerical scheme.

Which properties should the scheme satisfy?

Conservation/consistency property

Domain-preserving (positivity, entropy..)

Well-balanced property: preservation of stationary solutions

2D - 3D: Multi-dimensional-aware scheme

1[Lax (1973), Toro (2009), LeFloch (1988), Audusse et al. (2004), Gallice et al. (2022)]
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Multi-dimensional finite volume method

Classical scheme

Dimensional flux-splitting

Information delay

Instabilities may arise

Lost of multi-dimensional
properties

Multi-dimensional-aware scheme

Consider all cells around

Information in time

How to consider the entire stencil?

Idea: let us be inspired by the Lagrangian world
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Context & Motivations

Eulerian coordinates

Observe the flow from a fixed window

Lagrangian coordinates

Move and deform with the flow

The mesh moves

→ Nodal velocity up (p node) to move
the mesh in a compatible manner

Concept of nodal solver to obtain a
nodal parameter

The flux will depend on the nodal
parameter up

Reference
G. Gallice, A. Chan, R. Loubère, P.-H. Maire.
Entropy Stable and Positivity Preserving Godunov-Type Schemes for Multidimensional Hyperbolic
Systems on Unstructured Grid. Journal of Computational Physics, 2022.
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Outline

1 Introduction

2 Multi-point scheme for shallow water equations in supersonic flows
→ Collaboration with Manuel J. Castro

3 The Carbuncle phenomenon and stability analysis

4 Multi-point scheme for low-Mach flows → To be presented in the future

Alessia Del Grosso From hypersonic to low Mach flows 5 / 35



Multi-point scheme

1 Introduction

2 Multi-point scheme for shallow water equations in supersonic flows
→ Collaboration with Manuel J. Castro

3 The Carbuncle phenomenon and stability analysis

4 Multi-point scheme for low-Mach flows → To be presented in the future

Alessia Del Grosso From hypersonic to low Mach flows 5 / 35



System of Balance Laws: Shallow Water Equations

h(x, y, t) > 0 water depth

u(x, y, t) averaged velocity of water

B(x, y) bed elevation

η = h+ B free surface elevation

Alessia Del Grosso From hypersonic to low Mach flows 6 / 35



Shallow Water Equations2

∂tU+ ∂xF1(U) + ∂yF2(U) = S(U)
∂th+ ∂x(hu) + ∂y(hv) = 0
∂t(hu) + ∂x(hu2 + p) + ∂y(huv) = −gh∂xB

∂t(hu) + ∂x(huv) + ∂y(hv2 + p) = −gh∂yB

p = gh2/2 pressure with g gravitational acceleration;

Eigenvalues: given e = (ex , ey), u = (u, v)t , a =
√

gh,

λ− = u · e− a, λ− = u · e, λ− = u · e+ a.

Entropy inequality:

∂t(hE) + ∂x(uhE + pu) + ∂y(vhE + pv) ≤ −gh
(
u∂xB+ v∂yB

)
.

Stationary solutions: "lake at rest" steady state,

(u, v) = (0, 0) and h+ B = constant.

2[Vreugdenhil (1994), Temam (2001), Audusse et al. (2004)]
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Lagrangian vs Eulerian Coordinates (Normal Direction)3

Normal n and tangential t direction: un = u · n and ut = u · t, with u = unn+ utt.

Eulerian coordinates: observe the flow from a fixed window

∂Un

∂t
+

∂Fn(U)
∂xn

= Sn(U),

Un =


1
h
hun
hut

 , Fn =


0

hun
hu2n + p(h)

hunut

 , Sn =


0
0

−gh(∇B)n
0

 .

Lagrangian coordinates: move and deform with the flow

∂Vn

∂t
+

∂Gn(V)
∂m

= Pn(Vn),

Vn = τUn =


τ
1
un
ut

 , Gn = Fn − unUn =


−un
0
p
0

 , Pn(Vn) =


0
0

−gh∂mB
0

 ,

V volume, m = hV mass variable, τ = 1/h.

3[Gallice et al. (2022), Chan et al. (2021)]
Alessia Del Grosso From hypersonic to low Mach flows 8 / 35



Lagrangian vs Eulerian Coordinates (Normal Direction)3

Normal n and tangential t direction: un = u · n and ut = u · t, with u = unn+ utt.

Eulerian coordinates: observe the flow from a fixed window

∂Un

∂t
+

∂Fn(U)
∂xn

= Sn(U),

Un =


1
h
hun
hut

 , Fn =


0

hun
hu2n + p(h)

hunut

 , Sn =


0
0

−gh(∇B)n
0

 .

Lagrangian coordinates: move and deform with the flow

∂Vn

∂t
+

∂Gn(V)
∂m

= Pn(Vn),

Vn = τUn =


τ
1
un
ut

 , Gn = Fn − unUn =


−un
0
p
0

 , Pn(Vn) =


0
0

−gh∂mB
0

 ,

V volume, m = hV mass variable, τ = 1/h.

3[Gallice et al. (2022), Chan et al. (2021)]
Alessia Del Grosso From hypersonic to low Mach flows 8 / 35



Lagrangian vs Eulerian Coordinates (Normal Direction)3

Normal n and tangential t direction: un = u · n and ut = u · t, with u = unn+ utt.

Eulerian coordinates: observe the flow from a fixed window

∂Un

∂t
+

∂Fn(U)
∂xn

= Sn(U),

Un =


1
h
hun
hut

 , Fn =


0

hun
hu2n + p(h)

hunut

 , Sn =


0
0

−gh(∇B)n
0

 .

Lagrangian coordinates: move and deform with the flow

∂Vn

∂t
+

∂Gn(V)
∂m

= Pn(Vn),

Vn = τUn =


τ
1
un
ut

 , Gn = Fn − unUn =


−un
0
p
0

 , Pn(Vn) =


0
0

−gh∂mB
0

 ,

V volume, m = hV mass variable, τ = 1/h.

3[Gallice et al. (2022), Chan et al. (2021)]
Alessia Del Grosso From hypersonic to low Mach flows 8 / 35



Lagrangian vs Eulerian Coordinates (Normal Direction)3

Normal n and tangential t direction: un = u · n and ut = u · t, with u = unn+ utt.

Eulerian coordinates: observe the flow from a fixed window

∂Un

∂t
+

∂Fn(U)
∂xn

= Sn(U),

Un =


1
h
hun
hut

 , Fn =


0

hun
hu2n + p(h)

hunut

 , Sn =


0
0

−gh(∇B)n
0

 .

Lagrangian coordinates: move and deform with the flow

∂Vn

∂t
+

∂Gn(V)
∂m

= Pn(Vn),

Vn = τUn =


τ
1
un
ut

 , Gn = Fn − unUn =


−un
0
p
0

 , Pn(Vn) =


0
0

−gh∂mB
0

 ,

V volume, m = hV mass variable, τ = 1/h.

3[Gallice et al. (2022), Chan et al. (2021)]
Alessia Del Grosso From hypersonic to low Mach flows 8 / 35



Lagrangian vs Eulerian Coordinates (Normal Direction)3

Normal n and tangential t direction: un = u · n and ut = u · t, with u = unn+ utt.

Eulerian coordinates: observe the flow from a fixed window

∂Un

∂t
+

∂Fn(U)
∂xn

= Sn(U),

Un =


1
h
hun
hut

 , Fn =


0

hun
hu2n + p(h)

hunut

 , Sn =


0
0

−gh(∇B)n
0

 .

Lagrangian coordinates: move and deform with the flow

∂Vn

∂t
+

∂Gn(V)
∂m

= Pn(Vn),

Vn = τUn =


τ
1
un
ut

 , Gn = Fn − unUn =


−un
0
p
0

 , Pn(Vn) =


0
0

−gh∂mB
0

 ,

V volume, m = hV mass variable, τ = 1/h.

3[Gallice et al. (2022), Chan et al. (2021)]
Alessia Del Grosso From hypersonic to low Mach flows 8 / 35



Notations

c cell index with ωc polygonal cell

xp vector position of node p

p− (p+) previous (next) point with
respect to p

P(c) set of vertices (points) of ωc

f face, lpcf measure of the subface f

npcf = (nx , ny)pcf unit outward
normal of the subface

ωpc quadrangle formed by joining
the cell centroid, xc , to the midpoints
of [xp− , xp], [xp, xp+ ] and to xp
SF(pc) set of subfaces for p ∈ P(c)

Figure: Geometrical entities
attached to the polygonal cell ωc .

What about the flux F̃pcf which should depend on the nodal velocity up?
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Face Flux VS Subface Flux

Face flux for classical two-point schemes

F̃cf = F̃cf (Un
c ,U

n
d ,Bc,Bd ,ncf )

Classical conservation
→ left flux = -right flux . Figure: Two-point scheme

Subface flux for multi-point scheme

F̃pcf = F̃pcf (Un
c ,U

n
d ,Bc,Bd ,npcf ,up)

up nodal parameter.

Lost of classical conservation.
Conservation will be recovered by the
nodal solver.

Figure: Multi-point scheme
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Subface-based Finite Volume Scheme

Integration in time and space

|ωc|dtUc +

∫
∂ωc

F(U)n ds =
∫
ωc

S(U) dv

with Uc(t) =
1

|ωc|

∫
ωc

U(x, t) dv.

Subface-based finite volume scheme

Un+1
c = Un

c −
∆t
|ωc|

∑
p∈P(c)

∑
f∈SF(pc)

[
lpcf Fpcf − wpcf Spcf

]

= Un
c −

∆t
|ωc|

∑
p∈P(c)

∑
f∈SF(pc)

lpcf F̃pcf

.

F̃npcf = F(Ulf )npcf −
∫ 0

−∞

[
Wpcf ,E(Ulf ,Urf ,Blf ,Brf ,npcf , ξ,up)− Ulf

]
dξ
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1

|ωc|
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Lagrangian Approximate Riemann solver4

Riemann problem (normal direction)
∂Vnpf

∂t
+

∂[Gnpf (V)]
∂mnpf

= Pnpf ,

Vnpf (mnpf , 0) =

{
VLf if mnpf < 0,
VRf if mnpf ≥ 0.

Three ordered waves:

−λLf < λ0 = 0 < λRf .

Rankine-Hugoniot conditions

Across left and right waves:

λLf (V⋆
Lf − VLf ) +G⋆

n,Lf −Gn,Lf = 0,

−λRf (VRf − V⋆
Rf ) +Gn,Rf −G⋆

n,Rf = 0.

Approximate Riemann solver

Wpf ,L depends on up and it is such
that

Wpf ,L =


VLf if ξ < λLf ,

V⋆
Lf if λLf < ξ ≤ 0

V⋆
Rf if 0 < ξ ≤ λRf

VRf if λRf ≤ ξ.

4[Gallice (2002)]
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Node-based Consistency Conditions

What to do across the 0-wave ?

For the mass equation, classical jump condition: u⋆n,R = u⋆n,L = u⋆n .

For the other equations, we do not say anything =⇒ p⋆R ̸= p⋆L in general

We are left with only one unknown: u⋆n
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For the mass equation, classical jump condition: u⋆n,R = u⋆n,L = u⋆n .

For the other equations, we do not say anything =⇒ p⋆R ̸= p⋆L in general

We are left with only one unknown: u⋆n

Classical face-based jump condition

G̃R
n,pf − G̃L

n,pf = (∆mLf +∆mRf )Pnpf (∆mLf ,∆mRf ,VLf ,VRf ).

If there is no source term, conservation is obtained:

G̃R
n,pf − G̃L

n,pf = 0.
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What to do across the 0-wave ?

For the mass equation, classical jump condition: u⋆n,R = u⋆n,L = u⋆n .

For the other equations, we do not say anything =⇒ p⋆R ̸= p⋆L in general

We are left with only one unknown: u⋆n

Classical face-based consistency conditions

λLf (V⋆
Lf − VLf )− λRf (VRf − V⋆

Rf )

+ (G(VRf )−G(VLf ))npf

− (∆mLf +∆mRf )Pnpf (∆mLf ,∆mRf ,VLf ,VRf ,BLf ,BRf ) = 0.
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For the other equations, we do not say anything =⇒ p⋆R ̸= p⋆L in general

We are left with only one unknown: u⋆n

Node-based consistency conditions

∑
f∈SF(p)

lpf

[
λLf (V⋆
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f∈SF(p)

lpf
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n,pf − G̃L
n,pf

]
=

∑
f∈SF(p)

lpf (∆mLf +∆mRf )Pnpf (∆mLf ,∆mRf ,VLf ,VRf ).

Alessia Del Grosso From hypersonic to low Mach flows 13 / 35



Node-based Consistency Conditions

What to do across the 0-wave ?

For the mass equation, classical jump condition: u⋆n,R = u⋆n,L = u⋆n .

For the other equations, we do not say anything =⇒ p⋆R ̸= p⋆L in general

We are left with only one unknown: u⋆n

Node-based consistency conditions

∑
f∈SF(p)

lpf (p
⋆
Rf − p⋆Lf + gh∆BLR,f )npf = 0.
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Node-based Consistency Conditions

What to do across the 0-wave ?

For the mass equation, classical jump condition: u⋆n,R = u⋆n,L = u⋆n .

For the other equations, we do not say anything =⇒ p⋆R ̸= p⋆L in general

We are left with only one unknown: u⋆n

Node-based consistency conditions

∑
f∈SF(p)

lpf (p
⋆
Rf − p⋆Lf + gh∆BLR,f )npf = 0.

with

{
p⋆L = pL − λL(u⋆n − un,L)

p⋆R = pR + λR(u⋆n − un,R)
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Node-based Consistency Conditions

What to do across the 0-wave ?

For the mass equation, classical jump condition: u⋆n,R = u⋆n,L = u⋆n .

For the other equations, we do not say anything =⇒ p⋆R ̸= p⋆L in general

We are left with only one unknown: u⋆n

Node-based consistency conditions

∑
f∈SF(p)

lpf (λL,f + λR,f )(u
⋆
npf − uGodvnpf )npf = 0,

with uGodvn =
λLun,L + λRun,R

λL + λR
− (pR − pL + gh∆BLR)

λR + λL
.
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For the mass equation, classical jump condition: u⋆n,R = u⋆n,L = u⋆n .

For the other equations, we do not say anything =⇒ p⋆R ̸= p⋆L in general

We are left with only one unknown: u⋆n

Node-based consistency conditions

∑
f∈SF(p)

lpf (λL,f + λR,f )(u
⋆
npf − uGodvnpf )npf = 0,

with u⋆npf = up · npf .
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Node-based Consistency Conditions

What to do across the 0-wave ?

For the mass equation, classical jump condition: u⋆n,R = u⋆n,L = u⋆n .

For the other equations, we do not say anything =⇒ p⋆R ̸= p⋆L in general

We are left with only one unknown: u⋆n

Node-based consistency conditions Nodal solver

Mp up = wp

where Mp =
∑

f∈SF(p)

lpf (λlf + λrf )(npf ⊗ npf ),

and wp =
∑

f∈SF(p)

lpf (λlf + λrf )u
Godv
npf npf .
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Properties of the approximate Riemann solver

Well-balanced property

If VLf and VRf verify the steady "lake at rest" solution, we ask for

V⋆
Lf = VLf and V⋆

Rf = VRf .

We only need to impose consistent definition of the source term:

gh∆BLR = g
hR + hL

2
(BR − BL).

Positivity-preserving and entropy-stability properties

To impose them, we restrict the values of the wave speeds from below.
These conditions are implicit: an iterative procedure is required.

• Positivity: λL ≥ −u⋆n − un,L
τL

and λR ≥ u⋆n − un,R
τR

• Entropy: λL ≥
√
gh⋆LhL and λR ≥

√
gh⋆RhR

Alessia Del Grosso From hypersonic to low Mach flows 14 / 35



Properties of the approximate Riemann solver

Well-balanced property

If VLf and VRf verify the steady "lake at rest" solution, we ask for

V⋆
Lf = VLf and V⋆

Rf = VRf .

We only need to impose consistent definition of the source term:

gh∆BLR = g
hR + hL

2
(BR − BL).

Positivity-preserving and entropy-stability properties

To impose them, we restrict the values of the wave speeds from below.
These conditions are implicit: an iterative procedure is required.

• Positivity: λL ≥ −u⋆n − un,L
τL

and λR ≥ u⋆n − un,R
τR

• Entropy: λL ≥
√
gh⋆LhL and λR ≥

√
gh⋆RhR

Alessia Del Grosso From hypersonic to low Mach flows 14 / 35



Properties of the approximate Riemann solver

Well-balanced property

If VLf and VRf verify the steady "lake at rest" solution, we ask for

V⋆
Lf = VLf and V⋆

Rf = VRf .

We only need to impose consistent definition of the source term:

gh∆BLR = g
hR + hL

2
(BR − BL).

Positivity-preserving and entropy-stability properties

To impose them, we restrict the values of the wave speeds from below.

These conditions are implicit: an iterative procedure is required.

• Positivity: λL ≥ −u⋆n − un,L
τL

and λR ≥ u⋆n − un,R
τR

• Entropy: λL ≥
√
gh⋆LhL and λR ≥

√
gh⋆RhR

Alessia Del Grosso From hypersonic to low Mach flows 14 / 35



Properties of the approximate Riemann solver

Well-balanced property

If VLf and VRf verify the steady "lake at rest" solution, we ask for

V⋆
Lf = VLf and V⋆

Rf = VRf .

We only need to impose consistent definition of the source term:

gh∆BLR = g
hR + hL

2
(BR − BL).

Positivity-preserving and entropy-stability properties

To impose them, we restrict the values of the wave speeds from below.
These conditions are implicit: an iterative procedure is required.

• Positivity: λL ≥ −u⋆n − un,L
τL

and λR ≥ u⋆n − un,R
τR

• Entropy: λL ≥
√
gh⋆LhL and λR ≥

√
gh⋆RhR

Alessia Del Grosso From hypersonic to low Mach flows 14 / 35



Eulerian approximate Riemann solver5

Jump relations for mass equation

Provided the positivity of specific volumes, τ⋆S ≥ 0, the Eulerian wave speeds
are ordered: ΛL ≤ Λ0 ≤ ΛR:

ΛL =

un,L − λLτL = u⋆n − λLτ
⋆
L ,

Λ0 =

u⋆n,

ΛR =

u⋆n + λRτ
⋆
R = un,r + λRτR.

Eulerian approximate Riemann solver

WE =


UL if xn

t ≤ ΛL,

U⋆
L = U(V⋆

L) if ΛL <
xn
t ≤ Λ0,

U⋆
R = U(V⋆

R) if Λ0 <
xn
t ≤ ΛR,

UR if ΛR < xn
t .

with Lagrange-to-Euler mapping V 7→ U(V).

U⋆
n,Sf = ρ⋆SfV

⋆
n,Sf and F⋆n,Sf = u⋆nU

⋆
n,Sf +G⋆

n,Sf with S = L,R.

5[Chan et al. (2021)]
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Associated Godunov-type multi-point flux

Un+1
c = Un

c −
∆t
|ωc|

∑
p∈P(c)

∑
f∈SF(pc)

lpcf F̃pcf

F̃npcf = F(ULf )npcf −
∫ 0

−∞

[
Wpcf ,E(ULf ,URf ,BLf ,BRf ,npcf , ξ,up)− ULf

]
dξ

F̃npcf =
1
2

[
Fnpcf (Uc) + Fnpcf (Ud)

]
− 1

2

[
m∑

k=1

|Λk |(Uk+1 − Uk)

]
c,d

−
λL,pcf + λR,pcf

2

[
up · npcf − uGodv,wsnpcf

]
e2

= F2Pnpcf

= Fnpcf +
1
2
gh∆BLR,pf e2
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Numerical results for the shallow-water system

Numerical simulations
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Well-balanced property: flow over three mounds

(a) 3D view of h+ B and B. (b) Iso-lines of h.

Preservation of steady state!

Perturbation of steady state!
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Radial dam break 6

(c) 3D view of h+ B and B. (d) 10 iso-lines of 2m < h+ B < 11m.

Initial conditions: u = 0,

h(x, t = 0) =

{
11− B(x) if r ≤ r0,

2− B(x) otherwise,
with B(x) =

1
2

(
1+ cos

(
2πr
2

))
.

6[Alcrudo et al. (1993)]
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Flow past a cylinder: Carbuncle7

The Carbuncle phenomenon is a numerical artifact that may appear in presence of
strong shocks in supersonic and hypersonic regimes for the Euler equations.

(e) Unstable scheme (f) Multi-point scheme: correct
solution

7[Kemm (2014)]
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Odd-even decoupling8

(g) Unstable scheme (h) Multi-point scheme: correct solution

We introduce a small perturbation of order 10−3 in the horizontal central grid line.
This instability is considered of the same nature of the one in the blunt body problem.

8[Quirk (1994)]
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A troublesome phenomenon: the Carbuncle 9

There is not yet a unique opinion that has been adopted by everyone.

Are complete Riemann solvers better than incomplete ones?

Is the Carbuncle due to insufficient dissipation?

It is generally believed that a numerical scheme that exactly solves contact
discontinuities is prone to the Carbuncle.

The multi-point scheme preserves contact discontinuities but it is also
Carbuncle-free.

Similar conclusion about shear lines?
The multi-point scheme does not preserve shear lines due to the additional
diffusion term in the flux definition:

FMP
npcf = F2P

npcf −
λL,pcf + λR,pcf

2

(
up · npcf − uGodvnpcf

)
e2

9[Quirk (1994), Pandolfi and D’Ambrosio (2001), Liou (2000), Dumbser et al. (2004),
Kim t al. (2003), Robinet et al. (2000), Gressier and Moschetta (2000), Shen et al. (2016)]
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Multi-dimensional origin 10

Quirk (1994): the Carbuncle arises due to a lack
of dissipation via the contact discontinuity in
the direction parallel to the shock.

Shock

Transversal

Sanders et al. (1998): to extend a 1D numerical scheme to multi-dimension by
simply applying a dimensional flux-splitting may lead to the Carbuncle.

Vorticity wave to stabilize the numerical solutions: Moschetta et al., Dumbser
et al., Morton and Roe...

The numerical structure of shocks: physical shocks are numerically
represented by various points→ intermediate ones are purely numerical
Wada and Liou (1997) supposed that these intermediate points may exchange
information with the neighbors. See also Dumbser et al., Chauvat et al.

Has Carbuncle 1D roots? Jin and Liu, Arora and Roe, Bultelle et al., Zaide, etc.
Zaide and Roe (2011) studied the relations of the non-linearity of the
Rankine-Hugoniot conditions with the shock instability in 1D.

10[Sanders et al. (1998), Robinet et al. (2000), Dumbser et al. (2004), Moschetta et al. (2001),
Morton and Roe (2001), Wada and Liou (1997), Chauvat et al. (2005), Jin and Liu (1996),
Arora and Roe (1997), Bultelle et al. (1998), Zaide and Roe (2011), Zaide (2012) ]
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What is the root of the Carbuncle phenomenon?11

Physical origin

Researchers have carried out experiments in which they tried to induce the
Carbuncle phenomenon in the numerical solution.

This suggests that the Carbuncle is not a purely numerical artifact: it can be
the correct physical solution. The unphysical Carbuncle may be a different
entropy-satisfying solution for the same data.

Elling (2009) uses "filaments" to trigger the Carbuncle at the shock level.

11[Dumbser et al. (2004), Elling (2009), Morton and Roe (2001), Gressier and Moschetta (2000),
Robinet et al. (2000)]
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Elling test 12

(i) Initial condition

Figure: Multi-point scheme. 800× 320 (right) and 1600× 640 (left) cells.

12[Fleischmann et al. (2022)]
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What is the root of the Carbuncle phenomenon?13

Physical origin

Researchers have carried out experiments in which they tried to induce the
Carbuncle phenomenon in the numerical solution.

This suggests that the Carbuncle is not a purely numerical artifact: it can be
the correct physical solution. The unphysical Carbuncle may be a different
entropy-satisfying solution for the same data.

Elling (2009) uses "filaments" which triggers the Carbuncle at the shock level.

A numerical scheme should be able to reproduce the physical Carbuncle but not
the instability.

Elling goes as far as to say that Carbuncles are incurable: trying to eliminate
them implies assuming that the upstream flow is smooth, free of filaments and
other disturbances.

13[Dumbser et al. (2004), Elling (2009), Morton and Roe (2001), Gressier and Moschetta (2000),
Robinet et al. (2000)]
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Many hypotheses/aspects...

Pressure fluctuations

Liou’s (2000) conjecture

Mach number in the transversal direction to the shock

Entropy wave

Perturbation downstream or upstream the shock

Refinement of the grid

High-order of accuracy

Is there a way to establish if a given scheme is prone to the Carbuncle?
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Matrix stability analysis14

We consider a 2D planar steady shock and we analyse the evolution of
perturbation errors by using the matrix method. Specifically, we compute the
eigenvalues of the stability matrix and, depending on their value, classify the
numerical scheme accordingly as Carbuncle-prone or not.

The semi-discretization of the Euler system reads

dUc

dt
= − 1

|ωc|
∑

k∈FN (c)

lckFck (1)

Expand the field into its steady mean value (∧) and error (δ):

Uc = Ûc + δUc

Linearize Fck around the steady mean value

Fck(Uc,Uk) = Fck(Ûc, Ûk) +
∂Fck

∂Uc
· δUc +

∂Fck

∂Uk
· δUk

14[Dumbser et al. (2004)]
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Matrix stability analysis

Linear error evolution model reads

d(δUc)

dt
= − 1

|ωc|
∑

k∈FN (c)

lck

[
∂Fck

∂Uc
· δUc +

∂Fck

∂Uk
· δUk

]
(2)

Error evolution

d
dt

δU1

...
δUN

 = S ·

δU1

...
δUN

 (3)

S is the stability matrix of dimension 4N × 4N .

The solution of (3) is δU1

...
δUN

 (t) = exp(St)

δU1

...
δUN


t=0

The sign of the eigenvalues indicates how the error perturbation evolves:

max(Re(λ(S))) ≤ 0

We extended this analysis formulti-point numerical schemes.

Alessia Del Grosso From hypersonic to low Mach flows 29 / 35



Matrix stability analysis

Linear error evolution model reads

d(δUc)

dt
= − 1

|ωc|
∑

k∈FN (c)

lck

[
∂Fck

∂Uc
· δUc +

∂Fck

∂Uk
· δUk

]
(2)

Error evolution

d
dt

δU1

...
δUN

 = S ·

δU1

...
δUN

 (3)

S is the stability matrix of dimension 4N × 4N .

The solution of (3) is δU1

...
δUN

 (t) = exp(St)

δU1

...
δUN


t=0

The sign of the eigenvalues indicates how the error perturbation evolves:

max(Re(λ(S))) ≤ 0

We extended this analysis formulti-point numerical schemes.

Alessia Del Grosso From hypersonic to low Mach flows 29 / 35



Matrix stability analysis

Linear error evolution model reads

d(δUc)

dt
= − 1

|ωc|
∑

k∈FN (c)

lck

[
∂Fck

∂Uc
· δUc +

∂Fck

∂Uk
· δUk

]
(2)

Error evolution

d
dt

δU1

...
δUN

 = S ·

δU1

...
δUN

 (3)

S is the stability matrix of dimension 4N × 4N .

The solution of (3) is δU1

...
δUN

 (t) = exp(St)

δU1

...
δUN


t=0

The sign of the eigenvalues indicates how the error perturbation evolves:

max(Re(λ(S))) ≤ 0

We extended this analysis formulti-point numerical schemes.
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Matrix stability analysis

Linear error evolution model reads

d(δUc)

dt
= − 1

|ωc|
∑

k∈FN (c)

lck

[
∂Fck

∂Uc
· δUc +

∂Fck

∂Uk
· δUk

]
(2)

Error evolution

d
dt

δU1

...
δUN

 = S ·

δU1

...
δUN

 (3)

S is the stability matrix of dimension 4N × 4N .

The solution of (3) is δU1

...
δUN

 (t) = exp(St)

δU1

...
δUN


t=0

The sign of the eigenvalues indicates how the error perturbation evolves:

max(Re(λ(S))) ≤ 0

We extended this analysis for multi-point numerical schemes.
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Matrix stability analysis
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Figure: Roe’s scheme on the left. HLLE method on the right.
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Figure: Multi-point scheme. 1D wave speeds on the left.

Dukowicz wave speeds on the right.
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Matrix stability analysis

Perturbations are inserted in the initial conditions in order to trigger
instabilities.

(a) Roe’s scheme (b) Multi-point scheme,
Dukowicz wave speeds
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Conclusion?
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Concluding remarks and perspectives

Conclusions

The multi-point numerical scheme is well-balanced, positivity- and
entropy-preserving;

It is insensitive to the Carbuncle phenomenon;

We suppose the diffusion related to the shear lines to be crucial;

The analyses conducted so far give mixed results.

Perspectives

Further analysis of the method;

Extension to more complex physics;

Higher-order of accuracy;

What about low-Mach flows?
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Current work for low-Mach flows15

Low-Mach flows: M = |u|/c ≪ 1 =⇒ flow velocity ≪ sound speed

Classical schemes fail to reproduce an accurate solution for low-Mach flows:
lack of consistency with its limit behaviour as M tends to zero

Barsukow et al. (2023): multi-point scheme with nodal pressure to the linear
acoustic equations =⇒ Current work: extension to the Euler system

Problem: not clear how to move from the Lagrangian RS to the Eulerian RS due
to the presence of two star velocities.

(c) Initial condition (d) Two-point scheme (e) New multi-point scheme

15[Bourgeois et al. (2021), Barsukow et al. (2023), Chalons et al. (2017), Thomann et al. (2020)]
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Barsukow et al. (2023): multi-point scheme with nodal pressure to the linear
acoustic equations =⇒ Current work: extension to the Euler system

Problem: not clear how to move from the Lagrangian RS to the Eulerian RS due
to the presence of two star velocities.

(o) Initial condition (p) Two-point scheme (q) New multi-point scheme
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Thank you for your
attention!
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